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Abstract 

Combined heteroscedasticity and multicollinearity as dual non-spherical disturbances were 

experimented asymptotically. A Gibbs Sampler technique was used to investigate the asymptotic 

properties of hetero-elasticnet estimator with mean squares error (MSE) and bias as performance 

metrics. The seed was set to 12345; β is set at β = {2.5,3,1.5,1,0,0,0.5}; Xs variables were 

generated as follow: the design matrix was generated from the multivariate normal distribution 

with mean > 0 and variance σi
2. X1 and X2 are truncated with Harvey (1976) heteroscedastic error 

structure; X3, … , X6 are collinear covariate with pairwise correlation between 0.6 and 0.9, the 

sample sizes were 25, 100 and 1000. The number of replications of the experiment was set at 

10,000 with burn-in of 1000 which specified the draws that were discarded to remove the effects 

of the initial values. The thinning was set at 5 to ensure the removal of the effects of 

autocorrelation in the MCMC simulation. The study found that there is consistency of estimator 

asymptotically as the sample sizes increases from 25 to 50 so also to 1000, the larger sample size 

depicted least bias. The estimator exhibited efficiency asymptotically as larger sample sizes 

depicted least mean squares error. The study therefore recommended Bayesian hetero-elasticnet 

when data exhibit both heteroscedasticity and multicollinearity. 
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Introduction 

Correlations among covariates in the 

explanatory variables of linear regression vis a 

vis presence of heteroscedasticity affect the 

precision of the inferences of the parameter 

estimates. Obviously, the non-spherical 

disturbances in the data or model usually led to 

inefficient and inconsistent estimation, though 

the estimator is unbiased, the standard error 

and test of hypothesis computed for the 

estimator are invalid. Thus, the presence of 

both non-spherical disturbances poses serious 

threats to the appropriateness of the inferences 

of the parameter estimates.   

Meanwhile, mean squares error (MSE) and 

bias may be inflated owing to the presence of 

non-spherical disturbances. From the previous 

study of heteroscedasticity in the literature, 

ordinary least squares becomes inefficient and 

inconsistent when heteroscedasticity is present 

in the data and or model (Hadri and Guermat 

1999, Robinson 1987, White 1980). An 

example is naturally heteroscedastic model is 

the popular Cobb-Douglas (1928) production 

function which had been receiving series of 

criticisms and modifications since 1928 when 

the model was formulated. 

Hoerl and Kennard (1970) proposed ridge 

regression which minimises residual sum of 

squares subject to a constraint ∑|𝛽𝑗|
𝛾

≤ 𝑡 

where the shrinkage parameter 𝛾 = 2. Frank 

and Friedman (1993) introduced bridge 

regression which minimizes residual sum of 
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squares (RSS) subject to a constraint ∑|𝛽𝑗|
𝛾

≤

𝑡 where 𝛾 ≥ 0 with a special case of 0. 

Tibshirani (1996) formulated least absolute 

shrinkage and selection operator popularly 

tagged as Lasso with tuning parameter, this off 

course minimizes residual sum of squares 

(RSS) subject to a constraint ∑|𝛽𝑗| ≤ 𝑡 with 

𝛾 ≥ 0 which is more or less bridge regression 

when tuning parameter 𝛾 = 1, Lasso is a 

special case of penalized least squares which 

penalizes the parameter estimates and shrink 

some of the estimates to zero. This is a way to 

compensate for the presence of 

multicollinearity in the data and or model, of 

which if not penalized may make the covariates 

of explanatory variables to have zero 

determinant, Severien and Eric (2012). Lasso is 

a good selection operator which showcases the 

uninfected estimates after series of iterative 

algorithms. If the tuning parameter 𝛾 = 2, 

bridge regression becomes ridge regression. 

Series of extension of Lasso emerged recently 

in the literatures, adaptive Lasso was invented 

by Zou (2006), the elastic net was introduced 

by Zou and Hastic (2005) which minimises 

RSS subject to constraint 𝜆1 ∑|𝛽𝑗| +

𝜆2 ∑ |𝛽𝑗|
2𝑝

𝑗=1 ≤ 𝑡, where 𝜆1 and 𝜆2 denote 

tuning parameters one and two. Tibshirani et 

al. (2005) proposed fused Lasso, while Group 

Lasso was proposed by Yuan and Lin (2006), 

and Smoothly Clipped Absolute Deviation 

(SCAD) was introduced by Fan and Li (2001). 

Daye et al. (2012) explored high dimensional 

heteroscedastic regression. Heteroscedasticity, 

a significant non-spherical disturbance with 

multicollinearity was recently examined in the 

literature. Severien and Eric (2012) examined 

shrinkage and Lasso in high dimensional 

heteroscedasticity models. Due to nonlinearity 

of the model, the bridge model does not always 

perform the best in estimation and prediction 

compared to other shrinkage models, Fu 

(1998). In their studies Li and Lin (2010) 

opined that Bayesian elastic net outperformed 

elastic net in variable selection for more 

complicated models, it equally outperforms 

Bayesian Lasso in prediction accuracy for 

small samples from less sparse modes. The 

choice of penalty parameters 𝜆1  and  𝜆2  can 

be done by introducing hyper priors on them. 

This was exemplified by Park and Cassela 

(2008). Cassela et al. (2010) claimed that all 

the Lasso models with the exception of elastic 

net, the  𝜆  and  𝛽  parameters are conditionally 

independent given the 𝛾′𝑠  shrinkage parameter 

leading to a straightforward Gibbs sampler. 

Anirban et al. (2013) proposed Dirichlet prior 

and compared it with Bayesian Lasso prior, 

thus concluded that their proposed prior 

outperformed Bayesian Lasso prior due to its 

strong concentration around the origin. Should 

there be several relatively small signals, they 

opined that dirichlet prior can shrink all of 

them towards zero. Kayanan and Wijekoon 

(2020) affirmed that elasticnet performed better 

in high multicollinearity where Lasso 

regularization failed. 

Since there are two categories of 

multicollinearity {data and model based 

multicollinearity} so as also there exist data 

and model based heteroscedasticity, this paper 

examines the oracle properties of linear 

regression model when there are presence of 

both multicolliinearity and heteroscedasticity in 

both data and model asymptotically using 

Bayesian hetero-elasticnet. The study observed 

that most generalised estimators only deemed 

one non-spherical disturbance, the study 

therefore fill the gap of accommodating dual 

non-spherical disturbances both in the data and 

or model.    

 

Model Designs 

Let 𝑦 = 𝑋𝛽 + 𝑢 with 𝑢~𝑁(0, 𝜎𝑖
2Ω) where 

Ω  is a positive definite matrix of order    𝑛 × 𝑛. 

The model is truncated with both collinear of 

different tuning 𝛾 and one component 

heteroscedasticity error structure with 𝛿 as the 

scale; y as an n-vector of random responses; X 

as an 𝑛 × 𝑝  design matrix of corrupted 

collinear and heteroscedastic, 𝛽  as a p-vector 

parameters and u as an n-vector of 

heteroscedastic error structures 𝜎𝑖
2  𝑖 = 1, … , 𝑛. 

𝑦 = 𝛽0 + ∑ 𝛽𝑖
𝑝
𝑖=1 𝑋𝑖 + 𝑢𝑖                  (1)          
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Let  𝑋1    and 𝑋2 be truncated with 

multiplicative heteroscedasticity using Harvey  

(1976) which can be expressed as 𝜎𝑖
2 =

𝜎2(𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2)𝛿  where 𝛿 is an 

unknown parameter which determines the 

degree of heteroscedasticity, some of  variables 

in Xs are embedded with collinearity. Adopting 

a full Bayesian inference which incorporates 

the likelihood function, prior distribution for 

the parameters, and hyper-parameters in the 

model with MCMC algorithm we have: 

The likelihood function of 𝜃, where 𝜃 =
(𝛽𝑖 , 𝜆𝑗 , 𝛾, 𝛿) give the sample vector 𝑋𝑖 = (𝑖 =

1,2, … , 𝑝)′     and 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑛)′ is 

expressed as 𝐿(𝜃, 𝜎|𝑋, 𝑦) =

(2𝜋𝜎2)−𝑛/2 ∏ exp {−
1

2σ2
∑ [yi − xβ]2n

i=1 }n
i=1     

(2)  

Incorporating multiplicative hetero-elasticnet 

into likelihood function above, the study 

derived conditional likelihood of hetero-

elasticnet from the product of the error density 

function. Thus error u is changed to w for easy 

comprehension. 

 

Bayesian hetero-elastic net 

𝐿(𝜃, 𝜎|𝑋, 𝑦) =

(2𝜋𝜎2)−𝑛/2 ∏ |𝑤−𝜆/2|exp {−
1

2σ2
∑ (yi −n

i=1
n
i=1

xβ)′w−λ(yi − xβ)}                           (3) 

Incorporating elastic net in to the above model 

we have  

𝐿(𝜃, 𝜎|𝑋, 𝑦) =

(2𝜋𝜎2)−𝑛/2 ∏ |𝑤−𝜆/2|exp {−
1

2σ2
∑ (yi −n

i=1
n
i=1

xβ)′w−λ(yi − xβ) + λ1 ∑ |βi| +
p
i=1

λ2 ∑ |βi|
2p

i=1 }          (4) 

Or  

�̂�𝐻𝐸𝑁 =
𝑎𝑟𝑔𝑚𝑖𝑛

𝛽
(yi − xβ)′w−λ(yi − xβ) +

λ1 ∑ |βi| + λ2 ∑ |βi|
2p

i=1
p
i=1                     (5) 

To derive the full Bayesian density, we 

truncate the error density function Equation (3) 

with Gaussians , Laplacian and inverse-gamma 

priors. It is noteworthy that  Zou and Hastie 

(2005) said solving the Elastic net problem is 

just like deriving marginal posterior density 

mode of 𝛽|𝑦  particular when the prior 

distribution of 𝛽  (Li and Lin 2010) is given as 

𝜋(𝛽) ∝ 𝑒𝑥𝑝{−λ1 ∑ |βi| − λ2 ∑ |βi|
2p

i=1
p
i=1 } 

                                               (6) 

 

Instead we proposed multinomial Gaussian 

prior for the 𝛽𝑖, gamma prior for tuning 

parameter 𝜆𝑖, heteroscedastic 𝛿𝑖 and 

inverse gamma prior 𝜎𝑖
2. Marginal 

posterior density is obtained by integrating 

the joint posterior density with respect to 

each parameter, thus, expert opinion can be 

adopted by assuming the set of parameters 

𝛽𝑖, 𝜆𝑖 , 𝛿𝑖  and 𝜎𝑖 as independent marginal 
distribution. The study assumed a prior density 

𝜋(𝛽𝑖 , 𝜆𝑖 , 𝛿𝑖, 𝜎𝑖) = 𝜋(𝛽𝑖)𝜋(𝜆𝑖)𝜋(𝛿𝑖)𝜋(𝜎𝑖). Thus, 

𝜋(𝛽) ∝ (2𝜋𝜎𝑖
2)−

𝑛

2 exp {−
1

2𝜎𝑖
2  (𝛽𝑖 − 𝜇)2} , 𝛽 >

0  (7)  𝜋(𝜆𝑖) ∝ (𝜆𝑖)𝑎1+1 exp(−𝑏1/𝜆𝑖) , 𝜆𝑖 > 0          

(8)  

𝜋(𝛿𝑖) ∝ (𝛿𝑖)
𝑐1+1 exp(−𝑑1/𝛿𝑖) , 𝛿𝑖 > 0     (9) 

 𝜋(𝜎𝑖
2) ∝ (𝜎𝑖

2)𝑒1+1 exp(−𝑓1/𝜎𝑖
2) , 𝜎2 > 0  (10) 

The posterior distribution of 𝜃 = (𝛽𝑖 , 𝜆𝑖 , 𝛿𝑖 , 𝜎𝑖). 

Considering independence among the 

parameters is given by:  
 𝜋(𝛽𝑖 , 𝜆𝑖 , 𝛿𝑖, 𝜎𝑖|𝑋, 𝑦) ∝ 

(2𝜋𝜎2)−
𝑛

2𝜋(𝜆𝑖)𝜋(𝛿𝑖)𝜋(𝜎𝑖
2) exp {−

1

2𝜎2  (𝛽𝑖 −

𝜇)2}           (11a)       

∏ |𝑤−𝜆/2|𝑛
𝑖=1 exp {−

1

𝜎4 (𝑏1 + 𝑑1 + 𝑓1 +
1

2
∑ (yi − xβ)′w−λ(yi − xβ) + λ1 ∑ |βi| +

p
i=1

𝑛
𝑖=1

λ2 ∑ |βi|
2p

i=1 }         (11b)   

where 𝑎1, 𝑏1, 𝑐1, 𝑑1,  𝑒1, 𝑓1  are the hyper-

parameters for the gamma and inverse-gamma 

priors. Hyper-parameters are excluded for 𝛽𝑖-

parameters since they would be estimated from 

the data and may be arbitrarily small leading to 

problems which may eventually affect the 

inferences. Integrating the posterior 

𝜋(𝛽𝑖 , 𝜆𝑖 , 𝛿𝑖, 𝜎𝑖|𝑋, 𝑦)   with respect to 𝜎𝑖 , thus 

we have joint a posterior distribution for 
(𝛽𝑖 , 𝜆𝑖 , 𝛿𝑖) 

 𝜋(𝛽0, 𝛽1, 𝛽2, 𝜆, 𝜎|𝑋, 𝑦) ∝ 

(2𝜋)−
𝑛

2𝜋(𝜆𝑖)𝜋(𝛿𝑖) exp {−
1

2
 (𝛽𝑖 −

𝜇)2} ∏ |𝑤−
𝜆

2|𝑛
𝑖=1      (12)    
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exp {−(𝑏1 + 𝑑1 + 𝑓1 +
1

2
∑ (yi −𝑛

𝑖=1

xβ)′w−λ(yi − xβ) + λ1 ∑ |βi| +
p
i=1

λ2 ∑ |βi|
2p

i=1 }
−(𝑎1+𝑐1+𝑒1+𝑛

2⁄ )
   

                           

Gibbs algorithm update is performed on the 

full conditional distribution of 𝜎𝑖
2 ∝ 𝐼𝐺(𝑎1 +

𝑛

2
, 𝑏1 + 

1

2
∑ (yi − xβ)′w−λ(yi − xβ) +𝑛

𝑖=1

λ1 ∑ |βi| + λ2 ∑ |βi|
2p

i=1
p
i=1 ). This yields the 

following full conditional density of the 

parameters 𝛽𝑖 , 𝜆𝑖 , 𝛿𝑖  and 𝜎𝑖: 

𝜋(𝛽𝑖|𝜆𝑖 , 𝛿𝑖 , 𝑋, 𝑦) ∝ exp {−
1

2
 (𝛽𝑖 − 𝜇)2} 

∏ |𝑤−𝜆/2|𝑛
𝑖=1 exp {−

1

2
∑ (yi − xβ)′w−λ(yi −𝑛

𝑖=1

xβ)+λ1 ∑ |βi| + λ2 ∑ |βi|
2p

i=1
p
i=1 }−(𝑎1+𝑐1+𝑒1+𝑛

2⁄ )    

(13) 

𝜋(𝜎𝑖|𝛽𝑖 . 𝜆𝑖 , 𝛿𝑖, 𝑋, 𝑦) ∝ (𝜎𝑖
2)−(a1−1−

n

2
)exp (−

𝑏1

𝜎𝑖
2) 

∏ |𝑤−𝜆/2|𝑛
𝑖=1 exp {−

1

𝜎𝑖
2 (𝑏1 +

1

2
∑ (yi −𝑛

𝑖=1

xβ)′w−λ(yi − xβ) + λ1 ∑ |βi| +
p
i=1

λ2 ∑ |βi|
2p

i=1 }−(𝑎1+𝑐1+𝑒1+𝑛
2⁄ )     

     (14)  

𝜋(𝜆𝑖|𝛽𝑖 , 𝛿𝑖 , 𝑋, 𝑦)

∝ (𝜆𝑖)
(c1−1−

n

2
)exp (−

𝑑1

𝜆𝑖

) |𝑤−
𝜆

2| (𝑑1 

+
1

2
∑ (yi − xβ)′w−λ(yi − xβ) +𝑛

𝑖=1

λ1 ∑ |βi| + λ2 ∑ |βi|
2p

i=1
p
i=1 }−(𝑎1+𝑐1+𝑒1+𝑛

2⁄ )       (15) 

𝜋(𝛿𝑖|𝛽𝑖 , 𝜆𝑖 , 𝑋, 𝑦) ∝ (𝜆𝑖)
(e1−1−

n

2
)exp (−

𝑓1

𝜆𝑖

) |𝑤−
𝜆

2| 

(𝑓1 +
1

2
∑ (yi − xβ)′w−λ(yi − xβ) +𝑛

𝑖=1

λ1 ∑ |βi| + λ2 ∑ |βi|
2p

i=1
p
i=1 }−(𝑎1+𝑐1+𝑒1+𝑛

2⁄ )      (16) 

 

General posterior gibbs sampler procedures 

for Lasso-type bayes estimates 
It is generally asserted from the expert opinions 

that Lasso-type are the priors for 𝛽𝑖 , in this 

study there is no objection for such claim.  

Thus we adopted those priors along with the 

stated priors.  

𝜋(𝛽𝑖) =
1

2𝜏
𝑒𝑥𝑝 (−

|𝛽𝑗|

𝜏
) with 𝜏 = 1\𝜆.       (16) 

Park and Casella (2008) used empirical Bayes 

estimates for the penalty parameters 𝜆1  and 𝜆2, 

which are the maximization of the data 

marginal likelihood. This is accomplished by 

treating 𝛽𝑖 , 𝛿𝑖 ,𝜎𝑖
2. Penalized regression 

approaches have been used in cases where p < 

n and or where n < p. Efron et al. (2004) 

proposed Least Angle Regression Selection 

(LARS) for a model selection algorithm. 

Readers are advised to see Casella et al. (2010) 

for details. 

 

Simulation 
A Gibbs sampler technique was adopted to 

measure the performance of each estimator 

described in the previous section using MSE 

and bias. Seed was set to 12345; 𝛽  was set at  

𝛽 = {2.5,3,1.5,1,0,0,0.5}; Xs variables were 

generated as follows: the design matrix was 

generated from the multivariate normal 

distribution with mean > 0 and variance 𝜎𝑖
2. 𝑋1 

and 𝑋2 are truncated with Harvey (1976) 

heteroscedastic error structure; 𝑋3, … , 𝑋6 are 

collinear covariate with pairwise correlations 

between 0.6 and 0.9. The sample sizes were 25, 

100 and 1000. The number of replications of 

the experiments was set at 10,000 with burn-in 

of 1000 which specified the draws that were 

discarded to remove the effects of the initial 

values. The thinning was set at 5 to ensure the 

removal of the effects of autocorrelation in the 

MCMC simulation. For the Bayesian 

experiment, a Gibbs sampler algorithm was 

developed to simulate the heteroscedastic-

elasticnet based models. This was invoked in R 

Statistical software, R Core Team (2020).  

 

Results and Discussion 

In this study, a Bayesian Hetero-Elasticnet 

truncated linear model is presented, with 

multiplicative heteroscedasticity structure and 

collinear covariates. Parameters obtained 

through the posterior point estimate of Gibbs 

sampler were used to compute bias (measure of 

consistency) and mean squared error criterion 

(measure of efficiency). The levels of 

convergence of the chains were monitored 

using the method proposed by Gelman and 

Rubin (1992) and graphic analysis was carried 

out using coda package in R. Multivariate 

normal, gamma and inverse gamma 
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distributions were chosen as priors for 

parameter estimates ,𝜆1 , 𝜆2   and  𝜎2, 

respectively.   

Table 1 showed the outcomes of the 

estimations of Bayesian hetero-elasticnet based 

on the absolute bias performances with 

different scales of heteroscedasticity and 

sample sizes ranging from 25 to 1000. At 

sample size 25, it was observed that biases for 

�̂�1 to �̂�4 were consistent with scale of 

heteroscedasticity as we increased the scale of 

heteroscedasticity, and also the biases were 

increasing. But the biases for �̂�5 and �̂�6  

depicted inconsistence, the biases decrease up 

to the scale of 0.3, at the scale of 0.4 they 

increase as the scale is increased. Surprisingly, 

the bias decreases at the scale of 2. The biases 

for sample sizes 100, 200 and 1000 all depicted 

consistence for all the parameters. Similar 

patterns were observed with the study of Hadri 

and Guermat, (1999). It was observed that the 

bias for �̂�1 to �̂�6 increase algebraically as the 

scale of heteroscedasticity increases Thus, 

there exists consistency. The lambda one and 

two were randomly generated and were used to 

shrink the problematic parameters towards 

zero. 

 

Table 1: Benet based on absolute bias @ scale of heteroscedasticity with sample sizes 
Sample 𝜆1 𝜆2 𝛿𝑖 �̂�1 �̂�2 �̂�3 �̂�4 �̂�5 �̂�6 

 

 

 

 

 

 

 

25 

6.27 9.31 0.1 0.1161 0.5053 0.0134 0.0006 0.0335 0.0305 

6.27 6.53 0.2 0.2246 1.0073 0.0244 0.0061 0.0309 0.0262 

6.27 4.38 0.3 0.3281 1.5075 0.0376 0.0121 0.0289 0.0215 

9.40 8.80 0.4 0.4248 2.0045 0.0481 0.0303 0.0579 0.0565 

9.40 6.62 0.5 0.5199 2.4988 0.0614 0.0437 0.0635 0.0617 

9.40 5.08 0.6 0.6106 2.9901 0.0762 0.0588 0.0688 0.0665 

9.40 3.99 0.7 0.6964 3.4780 0.0923 0.0757 0.0737 0.0706 

9.40 3.20 0.8 0.7775 3.9624 0.1097 0.0943 0.0778 0.0739 

9.40 2.6 0.9 0.8536 4.4427 0.1286 0.1148 0.0812 0.0760 

9.40 2.17 1 0.9245 4.9191 0.1489 0.1369 0.0835 0.0769 

9.40 0.63 2 1.33 9.4061 0.4246 0.4593 0.0090 0.0274 

 

 

 

 

 

 

 

100 

34.9 5.05 0.1 0.1497 0.6251 0.0347 0.0373 0.0207 0.0167 

34.9 2.08 0.2 0.2984 1.2493 0.0646 0.0703 0.0502 0.0398 

34.9 1.06 0.3 0.4472 1.8725 0.0975 0.1064 0.0828 0.0649 

34.9 0.62 0.4 0.5957 2.4942 0.1332 0.1457 0.1182 0.0917 

34.9 0.41 0.5 0.7440 3.1137 0.1715 0.1877 0.1564 0.1199 

34.9 0.29 0.6 0.8918 3.7305 0.2123 0.2325 0.1971 0.1494 

34.9 0.21 0.7 1.0389 4.3439 0.2553 0.2797 0.2401 0.1799 

34.9 0.16 0.8 1.1851 4.9534 0.3004 0.3292 0.2852 0.2111 

34.9 0.13 0.9 1.3301 5.5585 0.3473 0.3807 0.3323 0.2429 

34.9 0.1 1 1.4737 6.1585 0.3957 0.4341 0.3811 0.2749 

34.9 0.02 2 2.7947 11.7726 0.9120 1.0190 0.9159 0.5663 

 

 

 

 

 

 

1000 

26.69 31.6 0.1 0.1586 0.6049 0.0077 0.0096 0.0083 0.0079 

26.69 20.6 0.2 0.3173 1.2091 0.0152 0.0197 0.0154 0.0137 

26.69 13.1 0.3 0.4755 1.8117 0.0236 0.0311 0.0231 0.0202 

26.69 8.67 0.4 0.6329 2.4121 0.0328 0.0435 0.0316 0.0272 

26.69 6.05 0.5 0.7895 3.0096 0.0429 0.0572 0.0406 0.0346 

26.69 4.43 0.6 0.9449 3.6038 0.0538 0.0719 0.0502 0.0424 

26.69 3.37 0.7 1.0990 4.1941 0.0656 0.0878 0.0603 0.0505 

26.69 2.64 0.8 1.2515 4.7798 0.0782 0.1046 0.0706 0.0588 

26.69 2.13 0.9 1.4021 5.3606 0.0915 0.1225 0.0814 0.0673 

26.69 1.7 1 1.5508 5.9357 0.1055 0.1413 0.0924 0.0758 

26.69 0.50 2 2.8908 11.2847 0.2768 0.3691 0.2001 0.1501 

Table 2 showed the mean squared error 

criteria, the mean squares errors for �̂�𝑠 

decrease algebraically as the sample sizes 

increase irrespective of the scale of 

heteroscedasticity. Thus, sample size 1000 

has the least mean squares error, 
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asymptotically; larger sample sizes bring 

about improvements in the estimation and 

reduce the effects of the error on the 

inferences. The study outcome is analogous 

to that of Hadri and Guermat (1999). 

Moreover, the mean squares errors have 

asymptotic efficiency since the MSE 

decrease as the sample size increases. 

Considering the scale of heteroscedasticity, 

the study revealed that the mean squared 

errors increase as the scale of 

heteroscedasticity increases for posterior 

mean of �̂�𝑠. The outcome of the study is 

analogous with the Kayanan and Wijekoon 

(2020).

 

Table 2: Benet based on MSE @ scale of heteroscedasticity with sample sizes 

Sample 𝜆1 𝜆2 𝛿𝑖 �̂�1 �̂�2 �̂�3 �̂�4 �̂�5 �̂�6 

 

 

 

 

 

 

 

25 

6.27 9.31 0.1 0.0525 0.2902 0.3203 0.3126 0.7168 0.7132 

6.27 6.53 0.2 0.0826 1.0433 0.2648 0.2579 0.5910 0.5871 

6.27 4.38 0.3 0.1341 2.2959 0.2196 0.2128 0.4872 0.4832 

9.40 8.80 0.4 0.2023 4.0370 0.1822 0.1759 0.4043 0.3998 

9.40 6.62 0.5 0.2883 6.2597 0.1523 0.1462 0.3345 0.3303 

9.40 5.08 0.6 0.3876 8.9534 0.1283 0.1224 0.2770 0.2731 

9.40 3.99 0.7 0.4973 12.1072 0.1096 0.1038 0.2298 0.2260 

9.40 3.20 0.8 0.6146 15.7088 0.0954 0.0897 0.1909 0.1873 

9.40 2.6 0.9 0.7369 19.7454 0.0853 0.0797 0.1588 0.1554 

9.40 2.17 1 0.8615 24.2031 0.0789 0.0736 0.1323 0.1289 

9.40 0.63 2 1.7698 88.4746 0.1885 0.2188 0.0179 0.0181 

 

 

 

 

100 

34.9 5.05 0.1 0.0313 0.3989 0.1295 0.1332 0.1178 0.1188 

34.9 2.08 0.2 0.0963 1.5675 0.1095 0.1130 0.0988 0.0988 

34.9 1.06 0.3 0.2059 3.5119 0.0959 0.0999 0.0859 0.0839 

34.9 0.62 0.4 0.3598 6.2255 0.0886 0.0938 0.0788 0.0738 

34.9 0.41 0.5 0.5576 9.6987 0.0876 0.0947 0.0776 0.0680 

34.9 0.29 0.6 0.7986 13.9193 0.0928 0.1027 0.0825 0.0663 

34.9 0.21 0.7 1.0819 18.8719 0.1043 0.1181 0.0934 0.0684 

34.9 0.16 0.8 1.4065 24.5385 0.1223 0.1409 0.1106 0.0741 

34.9 0.13 0.9 1.7708 30.8984 0.1468 0.1716 0.1344 0.0832 

34.9 0.1 1 2.1734 37.9282 0.1781 0.2102 0.1648 0.0954 

34.9 0.02 2 7.8108 138.5934 0.8347 1.0413 0.8415 0.3234 

 

 

 

 

 

 

1000 

26.69 31.6 0.1 0.0259 0.36681 0.0111 0.0113 0.0129 0.0128 

26.69 20.6 0.2 0.1013 1.4626 0.0092 0.0096 0.0108 0.0106 

26.69 13.1 0.3 0.2265 3.2827 0.0079 0.0085 0.0092 0.0090 

26.69 8.67 0.4 0.4011 5.8185 0.0072 0.0082 0.0081 0.0078 

26.69 6.05 0.5 0.6237 9.0583 0.0068 0.0084 0.0075 0.0069 

26.69 4.43 0.6 0.8932 12.9881 0.0070 0.0092 0.0073 0.0066 

26.69 3.37 0.7 1.2081 17.5909 0.0077 0.0112 0.0076 0.0065 

26.69 2.64 0.8 1.5665 22.8475 0.0088 0.0137 0.0082 0.0066 

26.69 2.13 0.9 1.9662 28.7363 0.0106 0.0173 0.0093 0.0071 

26.69 1.7 1 2.4053 35.2334 0.0129 0.0218 0.0107 0.0078 

26.69 0.50 2 8.3569 127.3451 0.0769 0.1365 0.0403 0.0228 

 

 

Conclusion 

The study observed that modelling hetero-

elasticnet in a full Bayesian improves the 

precision of the inferences of the estimates. 

The study found that 𝑋1 and 𝑋2 were affected 

as the scale of heteroscedasticity was increased 

while 𝑋3,…, 𝑋6 behave in different way. The 
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effects of heteroscedasticity on the parameters 

𝑋1 and 𝑋2  asymptotically are in line with the 

findings of Hadri and Guermat (1999). The 

study concludes that asymptotically, there exist 

consistency and efficiency in the estimations. 

The approach can be applied to further studies 

in the areas of simultaneous equations and 

other econometric models. 
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