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Abstract 

High School timetabling is the problem of scheduling lessons of different subjects and teachers to 

timeslots within a week, while satisfying a set of constraints which are classified into hard and soft 

constraints. This problem is different from university course timetabling problem because of the 

differences in structures including classroom allocations and grouping of subject combinations. 

Given the scarce education resources in developing countries, high school timetabling problem 

plays a very important role in optimizing the use of meager resources and therefore contribute to 

improvement of quality of education. The problem has attracted attention of many researchers 

around the world; however, very little has been done in Tanzania. This paper presents a solution 

algorithm known as Late Acceptance heuristic for the problem and compares results with previous 

work on Simulated Annealing and Great Deluge Algorithm for three schools in Dar es Salaam 

Tanzania. It is concluded that Late Acceptance heuristic gives results which are similar to the 

previous two algorithms but performs better in terms of time saving.  

 

Keywords: Late Acceptance, High School Timetabling, Combinatorial Optimization, Heuristics, 

NP-Hard  

 

Introduction  

High School Timetabling Problem 

(HSTP) is the problem of scheduling 

teachers and lessons of various subjects to a 

set of timeslots within a week while 

satisfying a set of constraints. This problem 

differs from the university course 

timetabling problem. In high school 

timetabling, classrooms are fixed for each 

class where each class is assigned to a fixed 

set of class combination depending on the 

subjects taken by the class; while in 

university timetabling, rooms are not fixed 

to a program group and students in a 

program can take varying courses. High 

School timetabling is a very important 

activity in optimization of teaching and 

learning resources especially in developing 

countries where these resources are scarce. It 

plays an important role in improving the 

quality of education in secondary schools.  

This problem is NP-Hard implying that 

there is no algorithm that is known to 

provide an optimal solution to such a class 

of problems within reasonable time (Even et 

al. 1976). Heuristic algorithms have been the 

most favorable options for such problems. A 

lot of attention has been placed by 

researchers especially in the developed 

world and vast numbers of papers are 

available on high school timetabling. The 

problem has many variants depending on the 

educational system of a country. 

International Timetabling Competition in 

2011 collected instances of problems from 

different countries to support researchers in 

tackling challenging problems in high school 

timetabling (Post et al. 2013). They 

collected 35 problems from Australia, 
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Brazil, United Kingdom, Finland, Greece, 

Italy, Netherlands and South Africa, and 

some groups presented solution algorithms 

for their specific problems. Clearly, there are 

many more variants of the problem and 

therefore calling for more instances with 

different features.  

Approaches to the problem can be 

grouped into exact and heuristics. Exact 

approaches include the work by Burke et al. 

(2013) that gives a general classification of 

timetabling problems and presents modeling 

approaches using graph theory. Birbas et al. 

(1997) provides an Integer Programming 

model and tested successfully on Greek high 

schools. Simon et al. (2014) presented a 

generalized model for high schools 

timetabling through Integer Programming. 

The model was tested on instances from the 

ITC and reported improved solutions to 

some of the problems in the list. Ribic et al. 

(2015) modeled constraints of a high school 

timetabling problem using Integer 

Programming and reported successful results 

to some instances of the problem. There are 

many other research results on exact 

methods using Integer and Mixed Integer 

Programming models including Willemen 

(2002), Matias and Riis (2012) and Valouxis 

et al. (2012). Models that apply constraint 

programming technique are also common 

and include; Marte (2002), Muller (2005) 

and Demirovic and Stuckey (2018). 

However, these exact methods do not 

guarantee that optimal solution will always 

be found for a general problem and may get 

stuck when problem size grows; a typical 

characteristic of NP-Hard problems. 

Heuristic approaches have been reported in 

many cases in the literature. Simulated 

Annealing has been used for high school 

timetabling problems for specific instances 

(Abramson 1991, Zhang et al. 2010). Tabu 

Search has also been applied in several 

papers including the work by Schaerf 

(1996). A presentation of Tabu Search, 

Simulated Annealing, Genetic Algorithms 

coupled with Branch and Bound is studied 

by Wilke and Ostler (2008). Evolutionary 

algorithms are also applied in the problem 

including the work by Filho and Lorena 

(2001) and also Fernandes et al. (2002). 

Graph based heuristics have been reported, 

such as the work presented in Burke et al. 

(2007). Metaheuristics techniques which 

combine various heuristics into one 

algorithm have been tested in several cases 

including Colorni et al. (1998). Other 

specific heuristics which have been applied 

in high schools timetabling include; fix-and-

optimize (Dorneles et al. 2014), Bacteria 

foraging (Kunthavai and Rajithaa 2018) and 

Local Search techniques (Schaerf 1999). 

Katsaragakis et al. (2015) performed a 

comparative study of modern heuristic 

techniques for high school timetabling by 

looking at population based methods; 

Particle Swam and Artificial Fish Swam 

applied to specific schools where they both 

performed well. In principle, many 

successful heuristic algorithms have been 

reported; however, they are all based on 

specific instances of applications, either 

from collected libraries of problems or 

specific schools. Since schools are different 

and have different features, it is necessary to 

investigate specific cases of schools which 

have not been explored.  

 

Specific features of the selected schools  

High school students in Tanzania are 

admitted to take a total of three courses 

called combinations. For instance a student 

may take Physics, Chemistry and 

Mathematics (PCM) or Physics, Chemistry 

and Biology (PCB) or History, Geography 

and Kiswahili (HGK) and many other 

possible choices. Each combination is 

considered to be a separate class and will 

occupy one room throughout their two years 

of high school studies, i.e., form V and form 

VI. Each subject has a set number of lessons 

which are to be taught to the students every 

week for a full term. A teacher may be 

assigned to teach more than one subject 

(maximum of two) in the same or different 
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combinations. There are subjects that are 

shared among the students including General 

Studies, Religious Studies and some 

compulsory courses depending on 

combination such as Basic Applied 

Mathematics (BAM) for business, 

economics and biological sciences students.  

A timetable is said to be feasible if it 

satisfies a set of hard constraints; these 

include the following:  

1. No class can be taught more than one 

lesson at the same time;  

2. No teacher can be assigned to teach 

more than one lesson at the same time;  

3. Lessons of the same subject cannot be 

assigned to the same timeslot;  

4. Compulsory lessons must have common 

times for all students (Crosscutting 

subjects);  

5. All lessons of all subjects must be 

scheduled for a complete timetable.  

Apart from these hard constraints there is 

a list of soft constraints; these have to be 

satisfied as much as possible and therefore 

form part of the objective function in the 

formulation of the problem. The following is 

a list of soft constraints as used in this work:  

1. Teachers have to commute to and from 

work every day and face challenges of 

traffic jams. It is therefore preferred to 

minimize as much as possible the use of 

early morning and late evening 

timeslots.  

2. Since a subject has several lessons, it is 

preferred to spread these lessons of the 

same subject as far as possible.  

3. Some lessons and teachers have 

preferred free times during the day, for 

instance Biology students may need free 

times to collect and prepare samples for 

laboratory experiments.  

 

Late Acceptance Heuristic  

Late Acceptance Heuristic (LAH) is a 

relatively new global heuristic method and it 

is one of the one-point iterative techniques. 

Global heuristic techniques employ various 

strategies to avoid falling into local optima 

by accepting bad moves in anticipation of 

better moves in the future. LAH avoids 

falling into local optima by accepting a bad 

solution by comparing it with a solution that 

was current several iterations back. In this 

case, a list of moves of size   is created and 

a new solution is accepted if it is better than 

current or better (or equal) to a solution 

which was current   number of iterations 

back. Burke and Bykov (2017) presented the 

so called “Late Acceptance Hill-Climbing 

Heuristic” which describes the algorithm for 

a case of a maximization problem. Many 

global heuristics techniques use cooling 

schedules to guide convergence into optimal 

solutions like Simulated Annealing 

(Henderson et al. 2003) and Tabu Search 

(Glover and Laguna 1998); whose 

performance is largely dependent on the 

choice of parameters by the user. LAH does 

not have a cooling schedule and requires 

only one input parameter, the list length   

and therefore more stable with less 

dependency on user input. The procedure is 

as shown in Algorithm 1 which has been 

adapted from Burke and Bykov (2017) to a 

minimization case.  

Algorithm 1: Late_Acceptance_Heuristic  

Produce an initial solution    

Calculate initial cost value           

Assign best solution so far         

Define fitness array      

Specify    

First iteration    ;  

For all                     

While not stopping criteria (Fixed iterations)  

Construct a candidate solution in 

neighborhood i.e.,                 as 

current solution 

Calculate its cost function          ` 

      mod    

If       or           

Then accept the candidate (   
  ) 

Else reject the candidate (  ) 

Insert the current cost into the 

fitness array         

End if  
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Increment the iteration number        

End While  

Return best solution (  )  

The algorithm has been implemented in 

several applications with recorded success 

including university course timetabling 

(Marwa and Mushi 2013), examinations 

timetabling (Ozcan et al. 2009) and vehicle 

routing (Souza et al. 2019) among others. 

Only one paper has been found to the best of 

knowledge that addresses high school 

timetabling, that is the work by Fonseca et 

al. (2016), for timetabling competition 

instances. It is worth therefore to contribute 

more work by introducing the algorithm to 

new real application problems.  

Mathematical Formulation  

Mathematical programming model is 

formulated in Mushi (2011) and is 

summarized as follows:  

Define a variable  
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Objective function (1) represents all soft 

constraints and (2)-(6) represent hard 

constraints of the problem, where;  

},...,{ 21 nlllH  : set of all lessons  

},...,{ 21 mkkkK  : set of all timeslots 

(periods)  

}...,{ 21 yjjjJ  : set of all subjects 

groups  

},...,{ 21 zcccC  : set of all classes  

jL Number of lessons of subject j  

jT A teacher who teaches subject 

group j  

jG A class of a subject group j  

MS A set of early morning timeslots  

AS A set of late afternoon timeslots  

RS A set of common religion timeslots  

SP = A set of slots which have restrictions 

due to other preferences and  

RSKK \  is a set of all timeslots 

excluding religion times which are normally 

fixed.  

 

Adapting Late Acceptance to HSTP  

To be able to apply Late Acceptance 

Heuristic to the HSTP, it is necessary to 

define a number of configurations, and these 

are;  

Solution data structure: this is defined using 

a 3-dimesional 0-1 matrix with entries 

Xxijk   where     =1 if lesson   of subject 

group   is slotted in timeslot   and 0 

otherwise. A typical Tanzanian high school 

has ten 40-minutes period timeslots per day, 

making a total of 50 timeslots per week and 

they are numbered from 1 on first period of 

Monday to 50 on the last slot on Friday of 

the week.  

Teacher data structure: usually teachers 

are pre-assigned to teach in a given subject 

group (they may belong to a maximum of 

two subject groups), and are identified 

through subject groups. An array   is defined 
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such that      is a teacher in the subject 

group  .  
Neighborhood structure: a neighbor of 

the current solution     is obtained by 

swapping randomly selected pair of timeslots 

of  . The swapping may create infeasibilities 

which are penalized in the objective function.  

Objective function: is a linear combination of 

all functions in the mathematical formulation 

including both soft and hard constraints. 

Hard constraints are penalized higher than 

soft constraints and a solution is feasible only 

when all hard constraints are satisfied. The 

objective function is summarized in equation 

(7);  

))( (
8

1

xf
i

i
i

xf 


    (7)  

Where  = weight given to constraint  .  
The functions       to       represent 

constraints of the problem, both hard and 

soft. As shown in the mathematical 

formulation which is adopted from Mushi 

(2011) the meanings the functions         
          are as follows:  
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As pointed earlier, a solution is feasible 

only if there are no violations of the hard 

constraints, i.e., the sum of objective values 

of all hard constraints is zero (equations 2 to 

6).  

Initial solution: is obtained by assigning 

lessons of a subject group sequentially into 

the timeslots followed by another subject 

group until all lessons are assigned to 

timeslots. This does not guarantee that the 

solution obtained is feasible but minimizes 

possible collisions for lessons within the 

same subject group. The initial solution is 

therefore infeasible but can be obtained in 

     time where   is the number of lessons.  

 

Summary of Results  

Data from three high schools have been 

collected with properties shown in Table 1. 
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Tambaza is the largest with 118 subject 

groups and 919 lessons followed by Azania 

with 62 subject groups and 462 lessons.  

Table 1: Properties of the problem instances  

Problem Subject groups Lessons Timeslots Teachers 

1(Azania) 62 462 45 30 

2(Jangwani) 46 332 40 26 

3(Tambaza) 118 919 50 50 

 

The algorithm was written in C++ and 

problems tested on a 3.3GHz processor in 

Windows platform. Through experience 

from stakeholders and types of constraints, 

the values of weights were selected as 

shown in Table 2 which concurs with 

previous work in Mushi (2011) for ease of 

comparisons.  

 
Table 2: Values of weights used in LAH  

Weight Value Description 

1 5 Lesson spread 

2 3 Early morning hours 

3 3 Late evening hours 

4 3 Non-preference 

timeslots 

5 10 Lesson completeness  

6 10 Class collision 

7 10 Lesson collision 

8 20 Teacher collision 

 

After experimentation it was found that 

the best value of   (Late value) is 10. The 

three problems were tested by varying 

number of iterations and results are as 

shown in Table 3. Iteration 0 means initial 

solution while other iterations show final 

solution found and time in seconds used to 

obtain the solution. In both problems, the 

number of iterations matters in finding a 

good solution as expected. However, there is 

a threshold in the number of iterations since 

all problems converge to a minimum point 

after a given number of iterations. Further 

growth in iterations does not yield any 

significant improvement. For instance, in 

Tambaza case the problem converges after 

4,000 iterations, while Azania converges 

after 2,000 iterations and Jangwani 

converges after only 1,000 iterations.  

Table 3: Final solutions versus number of Iterations 

Iterations  Tambaza Azania Jangwani 

 

Solution Time (Sec) Solution Time (Sec) Solution Time (Sec) 

0 2190.67 0 630.670 0 500.67 0 

1,000  909.14 97 306.556 29 249.004 17 

2,000  669.14 195 303.003 59 249.004 35 

3,000  598.14 292 303.003 88 249.004 57 

4,000  549.007 390 303.003 118 249.003 69 

5,000  549.007 487 303.003 147 249.003 87 

10,000 549.005 974 303.003 296 249.003 174 

20,000 549.003 1982 303.003 588 249.003 349 

 

Clearly this indicates that the number of 

iterations varies with the size of the problem 

where more iterations and therefore more 

time is needed to search in the solution 

space for higher sizes of problems. The 

convergence properties can be visualized in 

Figure 1.  
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Figure 1: Solution versus number of iterations. 

 

Since convergence varies with size of the 

problem it is important to fine tune the 

number of iterations for each problem for 

better results.  

A comparison is made with results 

obtained from two other heuristics on the 

same data set; these are Simulated 

Annealing (SA) (Mushi and Batho 2011) 

and Non-Linear Great Deluge (NLGD) 

(Mushi 2011). The results are as shown in 

Table 4 where the three heuristics give 

similar solutions. However, Late Acceptance 

performs better in terms of time in both 

cases.  

Table 4: Comparison of performances of three Heuristics  

Algorithm Tambaza Azania Jangwani 

 

Solution Time (Sec) Solution Time (Sec) Solution Time (Sec) 

SA  549.003 649 303.003 220 249.003 127 

NLGD  549.006 526 306.002 169 249.005 526 

LAH  549.007 390 303.003 59 249.004 17 

 

Late Acceptance performs as good as the 

other two heuristics but takes shorter to 

reach the best solution. It is therefore a good 

heuristic for the high school timetabling 

problem and better when time factor is a 

concern.  

Table 5 shows a comparison of 

performances in terms of satisfactions of 

both hard and soft constraints for LAH as 

compared to the manually generated 

timetables and those generated in the 

previous work by NLGD algorithm. Hard 

constraints were satisfied in all cases 

indicating that feasible timetables were 

generated in all three systems. Satisfaction 

of soft constraints in NLGD and LAH are 

very similar, showing insignificant 

differences but they all performed better 

than the manual system.  

 
Table 5: Comparison of constraints satisfactions between Manual, NLGD and LAH  

Problem Property Manual NLGD  LAH 

Azania  Solution cost 339.108 303.002 303.003 

Lesson collision 0 0 0 

Teacher Collision 0 0 0 

Completeness violations 0 0 0 

Lesson spread 0.108306 0.00248 0.00329 

Morning time violations 171 153 153 

Evening time violations 168 153 150 

Jangwani  Solution cost 311.014 249.005 249.003 

Lesson collision 0 0 0 
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Problem Property Manual NLGD  LAH 

Teacher collision 160 0 0 

Completeness violations 0 0 0 

Lesson spread 0.01445 0.00489 0.00328 

Morning time violations 154 126 126 

Evening time violations 157 123 123 

Tambaza  Solution cost  611.571 549.006 549.003 

Lesson collision 0 0 0 

Teacher collision 0 0 0 

Completeness violations 0 0 0 

Lesson spread 0.57111  0.00571 0.00271 

Morning time violations 372 276 276 

Evening time violations 239 273 273 

 

Conclusion and Further Research 

Directions  

This paper focused on implementing the 

Late Acceptance Heuristic for the High 

School Timetabling Problem and compare 

results with previous works on the same data 

set through Simulated Annealing and Non-

Linear Great Deluge algorithms. Despite of 

its simplicity with single parameter choice, 

Late Acceptance has shown to perform well 

with the same solutions as the other 

algorithms in both cases. However, Late 

Acceptance has shown to perform better in 

terms of time and therefore more useful 

when time factor is concerned. The value of 

a single parameter   is dependent on the size 

of the problem for better convergence and 

therefore fine tuning is necessary for better 

results.  

So far the data set used comes from three 

high schools; further extension by including 

data from more schools in the country may 

give better insights into the structure of the 

problem and give way for further 

exploration. Furthermore, the challenge of 

timetabling is not only in high schools, 

ordinary level secondary schools have more 

subjects, since each student is required to 

take at least seven subjects. Studies on these 

school timetables which are currently 

generated manually are areas for 

exploration. The data set has been tested on 

only three algorithms so far; more global 

heuristics algorithms can be implemented 

for further studies.  
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