
 

Tanzania Journal of Science 48(1): 225-234, 2022 

ISSN 0856-1761, e-ISSN 2507-7961 

© College of Natural and Applied Sciences, University of Dar es Salaam, 2022 

 

225 

         http://tjs.udsm.ac.tz/index.php/tjs                 www.ajol.info/index.php/tjs/ 
 

Investigation of the Effects of Some Statistical Data Components on the 

Selection of Optimum Smoothing Constant 
 

Musibaudeen O. Idris
1*

, Busayo S. Adeboye
1
, Buliaminu Kareem

2
, Godwin C. Enwerem

3
 

and Selimot A. Adekanye
4
 

1
Mechanical Engineering Department, Osun State University, Osogbo, Nigeria. 

2
Mechanical Engineering Department, Federal University of Technology, Akure, Nigeria. 

3
Mechanical Engineering Department, Federal Polytechnic Ede, Nigeria. 

4
Information and Communication Technology Department, Osun State University, Osogbo, 

Nigeria. 

*Corresponding author: musibaudeen.idris@uniosun.edu.ng 

Co-authors’ e-mail addresses: busayo.adeboye@uniosun.edu.ng; bkareem@futa.edu.ng; 

goddyenweremc@yahoo.com; adekanyeselimot2018@gmail.com 

Received 29 Jan 2022, Revised 29 Mar 2022, Accepted 31 Mar 2022, Published Mar 2022 

DOI: https://dx.doi.org/10.4314/tjs.v48i1.20 
 

Abstract 

Simple exponential smoothing is one of the best forecast methods, especially for time series 

data. Its efficacy depends on a parameter called smoothing constant (α) which, if optimally 

determined, minimises the mean square error (MSE), the mean absolute error (MAE) and the 

mean absolute percentage error (MAPE). The widely used method for selecting the optimum 

smoothing constant is to conduct a grid search within a wide range of possible values of α 

using the trial-and-error method. Not only that this method involves the knowledge of 

advanced statistical processes, but it is also time-consuming, and its results are limited to the 

data being analysed. In order to eliminate these limitations, there is a need to develop a 

benchmark that will guide the users of simple exponential smoothing to select the optimum α 

without necessarily repeating the trial-and-error method once a value has been established for 

data of similar statistical components. This study investigated some statistical components 

(mean, standard deviation, range, number of observations and pattern) of data to determine 

which components could aid in the quick and easy determination of optimum smoothing 

constant. The study determined the optimum smoothing constants for 16 different data of 

varying statistical components, and found that mean, standard deviation, range and the number 

of data observations are not related to the optimum smoothing constants. However, the demand 

pattern is an excellent precursor to determining the optimum smoothing constant. The study 

recommends further study in developing a classification model for demand patterns in job 

shops. 

 

Keywords: Simple exponential smoothing; optimum smoothing constant; trial and error; 

demand pattern; number of observations.  

 

Introduction 

The simple exponential smoothing 

method (SES) is one of the qualitative 

forecasting methods widely used in industries 

due to its accuracy and simplicity 

(Ostertagova and Ostertag 2012, Ravinder 

2013a, Marpaung et al. 2019, Cetin and 

Yavuz 2020). The forecasting method gives 

more weight to the recent observations than 

the remote ones; this unequal weighting is 

achieved through a parameter called the 

smoothing constant, α (Mu'azu 2014). In 

https://dx.doi.org/10.4314/tjs.v48i1.20
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addition, the accuracy of SES depends on the 

value of this constant; it also determines how 

responsive the forecast is to the historical 

data. The formula for exponential smoothing 

is: 

         (         )            
Where: 

Ft = forecast for period (t), 

Ft-1 = forecast for period (t-1), 

At-1 = actual observation for period (t-1) 

and α = smoothing constant (0 ≤ α ≤ 1). 

The major issue in using the exponential 

smoothing method is the choice of the values 

of smoothing constants (α) that gives the least 

mean error (Paul 2011, Ravinder 2013b). 

Ravinder (2013a) suggested a selection of 

optimum α between 0.00 and 0.30 when the 

data observations are less than or equal to 12 

and between 0 and 0.15 when the 

observations are more than 36. Although, 

using the trial-and-error method, Velumani et 

al. (2019) and Septiyana and Bahtiar (2020) 

got 0.30 and 0.20, respectively, for data with 

12 observations, but Paul (2011), Olaniyi et 

al. (2018) and Gustriansyah (2017) got 0.83, 

0.90 and 0.50 for data with 6, 8, and 9 

observations, respectively. Not only that, 

Hassan and Dhali (2017), Adeniran and 

Stephens (2018), Karmaker (2017) and 

Gorgess and Zahra (2018) got 0.68, 0.90, 

0.31 and 0.94 for data with 15, 17, 84 and 

120 observations, respectively. The 

suggestion of Ravinder (2013a) lacked 

empirical justification. It could not be 

generalised based on the results from other 

researchers as presented above. Mu’azu 

(2014) proposed a mathematical model 

relating the optimum α to the number of 

observations (n). The model is shown in 

equation 2. 

    (
   

  
)           

Using this model to determine the values of 

optimum smoothing constant for the numbers 

of observations discussed above shows no 

congruence between the optimum α from 

Mu'azu's model and those from other 

researchers using the trial-and-error method. 

This is clearly shown in Table 1.  

 

Table 1: Comparison of optimum α between Mu’azu’s model and trial-and-error method 

Number of 

Observations (n) 

Using Mu’azu’s 

model 

Optimum smoothing 

constant (MAE) 

Authors 

6 0.72 0.83 Paul (2011) 

8 0.71 0.90 Olaniyi et al. (2018) 

9 0.70 0.50 Gustriansyah (2017) 

12 0.69 0.30 Velumani et al. (2019) 

12 0.69 0.20 Septiyana and Bahtiar (2020) 

15 0.69 0.68 Hassan and Dhali (2017) 

17 0.69 0.90 Adeniran and Stephens (2018) 

84 0.67 0.31 Karmaker (2017) 

120 0.67 0.94 Gorgess and Zahra (2018) 

 

Furthermore, a recent study by Prabowo 

et al. (2021) rejected a relationship between 

the number of observations of data and the 

optimum smoothing constant. Suppose the 

number of data observations could not be a 

pointer to selecting the optimum smoothing 

constant. In that case, there is a need to look 

for other statistical information that can aid 

the users of simple exponential smoothing in 

selecting an optimum smoothing constant.   

For selecting appropriate forecasting 

methods, data classifications based on their 

patterns were tested and found to be 

effective. Williams (1984) analysed the 

demand data of a public utility and proposed 

a demand pattern categorisation based on 

variance partition to aid in selecting the best 

forecast method. The success of this work 

was limited to the particular data used in the 

paper, and when tested using other data, the 

classification could not yield an optimum 

result. Also, Varghese and Rossetti (2008) 

referred to this work to be problematic in its 

application to other similar data. Bartezzaghi 



Tanz. J. Sci. Vol. 48(1) 2022 

227 

et al. (1999) investigated the effects of 

different demand patterns on inventories 

under various experimental conditions. The 

result clearly shows that demand pattern 

impacts the determination of optimum 

inventories. 

Similarly, Syntetos et al. (2005) proposed 

a demand categorisation method with 

recommendations for an appropriate cut-off 

value for the squared coefficient of variation 

(CV
2
) and mean interval between non-zero 

demands. This method was closely adopted 

by Varghese and Rossetti (2008) to propose a 

demand categorisation for choosing an 

appropriate forecasting technique. The former 

and the latter's classifications were based on 

intermittent demand. Their objectives are to 

select an appropriate forecast method for the 

inventory system and not for the optimisation 

of exponential smoothing. 

Freeble (n.d.) proposed a general 

classification of demand patterns using 

Average Demand Interval (ADI) and Square 

of the Coefficient of Variation (CV
2
). The 

values of ADI and CV
2
 were determined 

using equations 3 and 4, respectively. 

 

     
                       

                         
                   

     (
                                           

                      
)
 

          

 

Based on these two dimensions, demand 

patterns were classified into; Smooth demand 

when ADI < 1.32 and CV
2
 < 0.49, 

Intermittent demand when ADI ≥ 1.32 and 

CV
2
 < 0.49, Erratic demand when ADI < 1.32 

and CV
2 

≥ 0.49 and Lumpy demand when 

ADI ≥ 1.32 and CV
2
 ≥ 0.49. The author 

emphasised the importance and relevance of 

knowledge of demand patterns in selecting 

appropriate forecast methods. These 

classifications are illustrated in Figure 1(a-d). 

 

 

 
Figure 1a: Intermittent demand pattern. 

 

 
Figure 1b: Lumpy demand pattern. 
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Figure 1c: Smooth demand pattern. 

 

 
Fig. 1d: Erratic demand pattern. 

 

Pearson Education (2007) also classified demand patterns into horizontal, trend, seasonal and 

cyclical patterns to select an appropriate forecast method. These classifications are shown in 

Figure 2 (a-d). 

 
Figure 2a: Horizontal demand pattern. Figure 2b: Trend demand pattern. 

 
Figure 2c: Seasonal demand pattern. Figure 2d: Cyclical demand pattern. 

(Source: https://slideplayer.com/slide/5177687/) 
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To the best of knowledge of the authors of 

this paper, no work has investigated the 

effects of demand patterns on selecting the 

optimum smoothing constant ( ). Most of the 

available studies focus on determining 

appropriate forecast methods, and they are 

mostly narrowed to the inventory system 

(Williams 1984, Bartezzaghi et al. 1999, 

Varhgese and Rossetti 2008, Boylan et al. 

2008). This paper aimed to investigate if 

there is a relationship between the mean, 

standard deviation, range and demand 

patterns of data and its optimum smoothing 

constant.  

 

 

 

Materials and Methods 

The data used for this study were adapted 

from Muscatello and Coccari (2000) and 

referred to as data 1. The elements in data 1 

were re-arranged in three different ways to 

produce data 2, data 3 and data 4. These four 

data had the same mean, standard deviation 

and range, but different patterns. The study 

also generated another set of data by 

multiplying each element in data 1, 2, 3 and 4 

by 1.5, 2.0, and 2.5 to produce data 1b, 1c, 

1d, 2b, 2c, 2d, 3b, 3c, 3d, 4b, 4c, and 4d. 

With these processes, 16 data were produced, 

which were categorised as shown in Table 2, 

and the actual data are shown in Tables 3a 

and 3b, while Figures 3a–3e show the 

demand patterns for each of the data. 

 

Table 2: Categories of data used 

 Same MSR 

but different P 

Same MSR but 

different P 

Same MSR but 

different P 

Same MSR but 

different P 

Same P but 

different MSR 

Data 1 Data 1b Data 1c Data 1d 

Same P but 

different MSR 

Data 2 Data 2b Data 2c Data 2d 

Same P but 

different MSR 

Data 3 Data 3b Data 3c Data 3d 

Same P but 

different MSR 

Data 4 Data 4b Data 4c Data 4d 

M = mean, S= standard deviation, R = range, P = Pattern. 

 

 Table 3a: Data used for the study 

Month Data 

1 

Data 

2 

Data 

3 

Data 

4 

Data 

1b 

Data 

1c 

Data 

1d 

Data 

2b 

Data 

2c 

Data 

2d 

1 430 512 398 436 645 860 1075 768 1024 1280 

2 420 436 512 420 630 840 1050 654 872 1090 

3 436 420 420 501 654 872 1090 630 840 1050 

4 452 398 477 452 678 904 1130 597 796 995 

5 477 477 452 532 715.5 954 1192.5 715.5 954 1192.5 

6 420 430 430 512 630 840 1050 645 860 1075 

7 398 532 532 477 597 796 995 798 1064 1330 

8 501 514 420 514 751.5 1002 1252.5 771 1028 1285 

9 514 501 514 410 771 1028 1285 751.5 1002 1252.5 

10 532 420 410 430 798 1064 1330 630 840 1050 

11 512 452 436 398 768 1024 1280 678 904 1130 

12 410 410 501 420 615 820 1025 615 820 1025 

Source: Adapted from Muscatello and Coccari (2000). 
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Table 3b: Data used for the study (continuation) 

Month Data 3b Data 3c Data 3d Data 4b Data 4c Data 4d 

1 597 796 995 654 872 1090 

2 768 1024 1280 630 840 1050 

3 630 840 1050 751.5 1002 1252.5 

4 715.5 954 1192.5 678 904 1130 

5 678 904 1130 798 1064 1330 

6 645 860 1075 768 1024 1280 

7 798 1064 1330 715.5 954 1192.5 

8 630 840 1050 771 1028 1285 

9 771 1028 1285 615 820 1025 

10 615 820 1025 645 860 1075 

11 654 872 1090 597 796 995 

12 751.5 1002 1252.5 630 840 1050 

Source: Adapted from Muscatello and Coccari (2000). 

 

 
Figure 3a: Set A (Same mean, standard deviation and range with different demand patterns). 

 

 
Figure 3b: Set B (Different mean, standard deviation and range with same demand pattern 1). 
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Figure 3c: Set C (Different mean, standard deviation and range with same demand patterns 2). 

 

 
Figure 3d: Set C (Different mean, standard deviation and range with same demand patterns 3). 

 

 
Figure 3e: Set D (Different mean, standard deviation and range with same demand patterns 4). 

 

The study used the expert system 

developed by Idris et al. (2021) to find the 

optimum smoothing constant for each of the 

16 data. The expert system employed the 

trial-and-error method to determine the 

optimum smoothing constants by testing 100 

possible α and selecting the optimum values 

from the tested ones. The results are shown in 

Table 4, and a sample of the results produced 

by the expert system for data 1 is shown in 

Figure 4. 
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Figure 4: Results produced by the expert system for data 1. 

 

Results and Discussion 

Four research questions (RQ) were 

formulated to investigate if some statistical 

data components (mean, standard deviation, 

range and pattern) affect the selection of 

optimum smoothing constant. The RQ are:  

RQ1: Is there any relationship between the 

optimum smoothing constant and the mean of 

data?  

RQ2: Is there any relationship between the 

optimum smoothing constant and the 

standard deviation
 
of data? 

RQ3: Is there any relationship between the 

optimum smoothing constant and the range of 

data? 

RQ4: Is there any relationship between the 

optimum smoothing constant and the pattern 

of data? 

Table 4 shows the values of optimum 

smoothing constants for each of the 16 data.  

 

Table 4: The optimum smoothing constants for each of the data 

Set Data Mean Standard 

deviation 

Range Pattern Optimum α   based on: 

MAE MSE MAPE 

A Data 1 458.50 46.55 134 Pattern 1 0.99 0.27 0.99 

 Data 2 458.50 46.55 134 Pattern 2 0.78 0.69 0.81 

 Data 3 458.50 46.55 134 Pattern 3 0.19 0.26 0.16 

 Data 4 458.50 46.55 134 Pattern 4 0.65 0.56 0.66 

B Data 1b 687.75 69.82 201 Pattern 1 0.99 0.27 0.99 

 Data 2b 687.75 69.82 201 Pattern 2 0.78 0.69 0.81 

 Data 3b 687.75 69.82 201 Pattern 3 0.19 0.26 0.16 

 Data 4b 687.75 69.82 201 Pattern 4 0.65 0.56 0.66 

C Data 1c 917.00 93.09 268 Pattern 1 0.99 0.27 0.99 

 Data 2c 917.00 93.09 268 Pattern 2 0.78 0.69 0.81 

 Data 3c 917.00 93.09 268 Pattern 3 0.19 0.26 0.16 

 Data 4c 917.00 93.09 268 Pattern 4 0.65 0.56 0.66 

D Data 1d 1146.25 116.36 335 Pattern 1 0.99 0.27 0.99 

 Data 2d 1146.25 116.36 335 Pattern 2 0.78 0.69 0.81 

 Data 3d 1146.25 116.36 335 Pattern 3 0.19 0.26 0.16 

 Data 4d 1146.25 116.36 335 Pattern 4 0.65 0.56 0.66 

Source: Authors. 
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Table 4 was used to answer the research 

questions 1, 2, 3, and 4. Considering the four 

(4) data in set A having the same value of 

mean (458.50), the same value of standard 

deviation (46.55) and the same value of range 

(134), the values of optimum smoothing 

constants were not the same. The values of 

optimum smoothing constants for MAE are; 

0.99, 0.78, 0.19, 0.65, for MSE are; 0.27, 

0.69, 0.26, and 0.56 and also for MAPE the 

values are; 0.99, 0.81, 0.16 and 0.66. This 

shows that the optimum smoothing constant 

does not depend on the mean, standard 

deviation and range of data. 

Considering set B with 687.75, 69.82, and 

201 as mean, standard deviation and range, 

respectively, the optimum smoothing 

constants for all the data in set B are not the 

same. This was also obtained for sets C and 

D, where the data with the same mean value 

have different values of optimum smoothing 

constants. These results further buttress the 

fact that the value of the optimum smoothing 

constant does not depend on the values of 

mean, standard deviation and range of data. 

Hence, research questions 1, 2 and 3 are 

rejected. 

For the fourth research question: Is there 

any relationship between the optimum 

smoothing constant and the pattern of data? 

To answer this question, from Table 4, 

considering the data that have the same 

pattern, such as data 1, 1b, 1c, and 1d with a 

different range, mean and standard deviation, 

the data have the same optimum smoothing 

constant; 0.99 (MAE), 0.27 (MSE) and 0.99 

(MAPE). Also, the four data with the same 

pattern 2 (2, 2b, 2c and 2d) have the same 

values of optimum smoothing constant; 0.78 

(MAE), 0.69 (MSE) and 0.81 (MAPE). This 

is also applicable for other data with the same 

patterns 3 and 4. This result shows that the 

value of optimum smoothing constants of 

data could only be the same if the data have 

the same pattern irrespective of their range, 

mean and standard deviation values. This 

result is similar to the result of Varghese and 

Rossetti (2008), which was used for selecting 

the appropriate forecast method.  

 

 

 Conclusion 

Simple exponential smoothing is a versatile 

forecasting technique widely used for time 

series data; it finds applications in most 

forecast software due to its precision, 

flexibility and simplicity. Its accuracy 

depends on a parameter called the smoothing 

constant (α). The selection of this parameter 

is mostly by the trial-and-error method. The 

most effort made to find the optimum 

smoothing constant by the earlier researchers 

was only made for the data in which it is 

analysed. No report was found that 

recommends any statistical component that 

could aid the selection of optimum smoothing 

constant. This study determined the optimum 

smoothing constant for sixteen data grouped 

into; data with different means, range, and 

standard deviation but the same pattern, and 

data with different patterns but the same 

means, range, and standard deviation. It was 

found that data with the same pattern but 

different mean, range, and standard deviation 

have the same optimum smoothing constant. 

Data with different patterns but the same 

mean, range, and standard deviation have 

different optimum smoothing constants. The 

study also refutes the claim that an optimum 

smoothing constant is related to the number 

of observations in data. The study hereby 

recommends further study on the 

classification of demand patterns to facilitate 

quick selection of optimum smoothing 

constant.  
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